Photobiomodulation in the Brain

Low-Level Laser (Light) Therapy in Neurology and Neuroscience

Edited by
Michael R. Hamblin and Ying-Ying Huang
Photobiomodulation in the Brain
Low-Level Laser (Light) Therapy in Neurology and Neuroscience

Edited by

Michael R. Hamblin
Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA, United States
Department of Dermatology, Harvard Medical School, Boston, MA, United States

Ying-Ying Huang
Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA, United States
Department of Dermatology, Harvard Medical School, Boston, MA, United States
Dedication

To the love of my life, my beautiful wife, Angela
Michael R. Hamblin

To Sophie and Ryan, you have always been great sources of inspiration, joy, and pride
Ying-Ying Huang
This page intentionally left blank
Contents

List of Contributors xix
Preface xxv

Part I
Basic considerations and in vitro 1

1. Photobiomodulation therapy and the brain: an innovative tool for therapy and discovery 3
 Praveen R. Arany
 1.1 Introduction 3
 1.1.1 Beyond the structure-function architecture of the human brain 3
 1.1.2 A bottom-up approach to brain neurosciences 4
 1.1.3 Modulating the “brain black box” with light 5
 References 6

2. Theoretical neuroscience 9
 Marcelo Victor Pires de Sousa, Marucia Chacur, Daniel Oliveira Martins and Carlo Rondinoni
 2.1 Molecular and cellular neuroscience 9
 2.1.1 History of neuroscience discovery over the decades 9
 2.1.2 Molecular techniques in neuroscience research 10
 2.2 Translational research in neuroscience 11
 2.3 Approaches to simulations and computational neuroscience 11
 2.3.1 Neural function simulation 12
 2.4 Cognition and behavior 13
 2.5 Neural treatment simulation 16
 References 17

3. Photobiomodulation of cultured primary neurons: role of cytochrome c oxidase 21
 Margaret Wong-Riley and Huan Ling Liang
 3.1 Introduction 21
 3.2 Cytochrome c oxidase: a biological mediator of photobiomodulation 21
 3.3 Effect of photobiomodulation on primary neurons exposed to tetrodotoxin 22
 3.4 Equilibrium constants of azide and cyanide with cytochrome c oxidase 23
 3.5 Effects of photobiomodulation at different wavelengths 24
 3.6 Optimal regimen of photobiomodulation via light-emitting diode for cultured neurons exposed to cyanide 26
 3.7 Photobiomodulation pretreatment has added benefits for neurons exposed to cyanide 28
 3.8 Therapeutic effect of photobiomodulation on primary neurons exposed to MPP⁺ or rotenone 29
 3.9 Pretreatment with photobiomodulation is beneficial for neurons exposed to MPP⁺ or rotenone 31
 3.10 Conclusions 32
 Acknowledgments 32
 References 32

4. Photobiomodulation on cultured cortical neurons 35
 Ying-Ying Huang and Michael R. Hamblin
 4.1 Introduction 35
 4.2 Dose response in cultured cortical neurons 36
 4.3 Oxidative stress in cultured cortical neurons 38
Contents

4.4 Excitotoxicity in cultured cortical neurons 41
Conclusion 45
References 46

5. Safety and penetration of light into the brain 49
Erica B. Wang, Ramanjot Kaur, Manuel Fierro, Evan Austin, Linda Ramball Jones and Jared Jagdeo

5.1 Introduction 49
5.2 Safety 49
5.2.1 Animal studies 49
5.2.2 Clinical studies 51
5.2.3 NeuroThera Effectiveness and Safety Trial clinical trials 51
5.3 Light penetration into the brain 51
5.4 Mechanism of action 52
5.5 Penetration depth 53
5.6 Optical properties of tissue 54
5.6.1 Light—tissue interactions 54
5.6.2 Melanin 54
5.6.3 Water 55
5.6.4 Hemoglobin 55
5.6.5 Optical window 56
5.7 Cerebrospinal fluid 57
5.7.1 Gray and white brain matter 57
5.8 Wavelength 57
5.8.1 Animal studies 58
5.8.2 Human studies 58
5.9 Skull anatomy 59
5.9.1 Animal studies 59
5.9.2 Human studies 59
5.9.3 Monte Carlo modeling 59
5.10 Irradiance 62
5.11 Coherence 62
5.12 Pulsing 62
5.13 Tissue storage and processing 63
5.14 Conclusion 63
References 64
Further reading 66

Theodore A. Henderson and Larry D. Morries

6.1 Introduction 67
6.1.1 Understanding near-infrared light 67
6.2 Light interactions with tissue 70
6.2.1 Reflection and refraction 70
6.2.2 Scattering 71
6.2.3 Absorption 72
6.2.4 Penetration 74
6.2.5 Speckling 75
6.3 Infrared light—on a journey to the brain 76
6.3.1 Penetration of skin 76
6.3.2 Penetration of skull 78
6.3.3 Penetration of heterogeneous tissues 79
6.3.4 A hairy problem 82
6.3.5 Effectively treating the brain 83
6.4 Alternative hypotheses to direct near-infrared light energy effects 83
6.5 Conclusion 85
Acknowledgments 86
References 86

7. Light sources and dosimetry for the brain and whole body 89
James D. Carroll

7.1 Dose 89
7.2 Irradiation parameters: wavelength (nm) 89
7.3 Penetration 90
7.4 Power Watts (W) 90
7.5 Beam spot size (cm²) 91
7.6 Irradiance (W/cm²) 91
7.7 Pulses 91
7.8 Coherence 92
7.9 Time, energy, and fluence 92
7.10 Fluence (energy density) (J/cm²) 93
7.11 Irradiation time (seconds) 93
7.12 Number of treatments and treatment intervals (hours, days, or weeks) 93
7.13 Devices 94
References 94

8. Mechanisms of photobiomodulation in the brain 97
Michael R. Hamblin

8.1 Introduction 97
8.2 Molecular mechanisms of photobiomodulation 97
8.2.1 Mitochondria and cytochrome c oxidase 97
8.2.2 Opsins, flavins, and cryptochromes 99
8.2.3 Light-gated ion channels 99
8.2.4 Water as a chromophore 100
8.3 Mechanisms of photobiomodulation applied to the brain 100
8.3.1 Metabolism 101
8.3.2 Blood flow 101
8.3.3 Neuroprotection 101
8.3.4 Oxidative stress 102
8.3.5 Antiinflammatory effects 102
8.3.6 Neurogenesis 103
8.3.7 Synaptogenesis 104
8.3.8 Stem cells 104
8.3.9 Preconditioning 105
8.3.10 Systemic effects 105
8.3.11 Laser acupuncture 105
8.4 Conclusion 106
References 106

Part II
Studies in animal models 111

9. Transcranial photobiomodulation for stroke in animal models 113
Luis De Taboada and Michael R. Hamblin
9.1 Introduction 113
9.2 Animal models of stroke 115
9.2.1 Middle cerebral artery occlusion 115
9.2.2 Rabbit small clot embolic stroke model 116
9.2.3 Photothrombotic stroke models 116
9.3 Photobiomodulation for ischemic stroke in MCAO models 117
9.4 Photobiomodulation for ischemic stroke using the RSCEM model 118
9.5 Photobiomodulation for ischemic stroke in photothrombotic model 119
9.6 Conclusion 121
References 121

10. Photobiomodulation in photothrombotic stroke 125
Lorelei Tucker, Luodan Yang, Yong Li and Quanguang Zhang
References 136

11. Remote photobiomodulation as a neuroprotective intervention—harnessing the indirect effects of photobiomodulation 139
Luke Gordon, Boaz Kim, Claudia Petrucco, Ji Yeon Kim, Patrick Benson, Jonathan Stone and Daniel M. Johnstone
11.1 Transcranial photobiomodulation 139
11.2 Limitations of transcranial photobiomodulation 140
11.3 Alternative photobiomodulation treatment modalities 140
11.3.1 Intracranial photobiomodulation 140
11.3.2 Intranasal photobiomodulation 141
11.4 Introducing “remote photobiomodulation” 141
11.5 Discovering the indirect effects of photobiomodulation 142
11.6 The effects of photobiomodulation on stem cells 144
11.7 Remote photobiomodulation as a neuroprotective intervention 145
11.7.1 Parkinson’s disease 145
11.7.2 Alzheimer’s disease 146
11.7.3 Retinopathy 146
11.8 The precedent: remote ischemic conditioning 147
11.9 Peripheral tissue targets for remote photobiomodulation-induced neuroprotection 148
11.10 Mechanisms underlying remote photobiomodulation-induced protection 148
11.10.1 Circulating cellular mediators 148
11.10.2 Circulating molecular mediators 149
11.10.3 Modulation of the microbiome 149
11.10.4 Neurogenic signaling 149
11.11 Conclusion 150
References 150

12. Photobiomodulation for traumatic brain injury in mouse models 155
Michael R. Hamblin
12.1 Introduction 155
12.2 Studies from other laboratories 155
12.3 Studies from the Hamblin laboratory 156
12.3.1 Closed-head traumatic brain injury study 156
12.3.2 Pulsed versus continuous wave photobiomodulation for traumatic brain injury 156
12.3.3 Treatment repetition study 157
12.3.4 Photobiomodulation increases neurogenesis and neuroprogenitor cells in traumatic brain injury mice 159
12.3.5 Photobiomodulation increases BDNF and synaptogenesis in traumatic brain injury mice 161
12.3.6 The solution to the problem of 14 daily photobiomodulation treatments 163
18. Effects of near-infrared low-level laser stimulation on neuronal excitability 233
Ljubica M. Konstantinović and Saša R. Filipović
18.1 Introductory remarks 233
18.2 Neuronal excitability—experimental results 234
 18.2.1 Effects on peripheral nerves 234
 18.2.2 Effects on brain 234
18.3 Proposed mechanisms 236
18.4 Future directions 239
Acknowledgment 239
References 239

19. Photobiomodulation for multiple sclerosis in animal models 241
M.A. Tolentino and J.A. Lyons
19.1 Introduction 241
19.2 Experimental autoimmune encephalomyelitis and multiple sclerosis 241
19.3 Photobiomodulation therapy for the treatment of experimental autoimmune encephalomyelitis/multiple sclerosis 244
19.4 Conclusion and future directions 249
References 249

20. Hepatic encephalopathy and photobiomodulation: experimental models and clinical features 253
Natalia Arias, Juan Díaz González, Alberto Martín Pernía and Jorge L. Arias
20.1 Introduction 253
20.2 What is hepatic encephalopathy? 255
20.2.1 The contribution of ammonia 255
20.2.2 The contribution of oxidative/nitrosative stress 258
20.3 Photobiomodulation for hepatic encephalopathy 259
Acknowledgment 260
References 260
Further reading 263

21. Photobiomodulation in animal models of retinal injury and disease 265
Janis T. Eells
21.1 Introduction 265
21.2 Methanol intoxication 267
21.3 Bright light-induced retinal damage 267
21.4 Diabetic retinopathy 269
21.5 Retinitis pigmentosa 269
21.6 Aging and age-related macular degeneration 269
21.7 Retinopathy of prematurity 270
21.8 Optic nerve injury 270
21.9 Glaucoma 271
21.10 Conclusion and future directions 271
Acknowledgment 271
References 271
Further reading 273

22. Transcranial photobiomodulation therapy for pain: animal models, dosimetry, mechanisms, perspectives 275
Marcelo Víctor Pires de Sousa, Nathali Cordeiro Pinto and Elisabeth Mateus Yoshimura
22.1 Introduction 275
22.2 Pain—a major problem for human health 276
22.3 Transcranial photobiomodulation therapy—a multidisciplinar solution for pain 277
22.4 Photoneuromodulation: dosimetry, mechanisms, and therapeutics in translational research 277
 22.4.1 Dosimetry 277
 22.4.2 Mechanisms 279
 22.4.3 Therapeutic effects 281
 22.4.4 Irradiation of nervous system: peripheral versus central 281
22.5 Photoneuromodulation of glutamate receptors, prostatic acid phosphatase and adenosine triphosphate 283
22.5.1 Behavioral evaluation of pain 283
22.5.2 Neurochemical and neurobiological evidences of analgesic effect 283
22.6 Future directions of transcranial photobiomodulation therapy for pain 284
22.7 Conclusion 285
References 285

Part III
Clinical studies 287

23. The challenge of effectively translating transcranial near-infrared laser therapy to treat acute ischemic stroke 289
Paul A. Lapchak

23.1 Introduction 289
23.2 NeuroThera effectiveness and safety trial (NEST): from transcranial laser therapy efficacy to NEST futility 289
23.2.1 NeuroThera effectiveness and safety trial-1 290
23.2.2 NeuroThera effectiveness and safety trial-2 291
23.2.3 NeuroThera effectiveness and safety trial-3 292
23.3 Translational stroke research in the embolic stroke rabbit model 293
23.3.1 Preclinical efficacy 293
23.4 What went wrong in NeuroThera effectiveness and safety trials? 294
23.5 Conclusions and commentary: should transcranial laser therapy be further considered as an approach to treat stroke? 294
References 295

Sherry Fox and Victoria Campbell

24.1 Introduction 299
24.2 Definition and statistics—traumatic brain injury 300
24.3 Developmental aspects 301
24.4 Physiological components 301
24.5 Psychological manifestations 302
24.6 Sociological implications 302
24.7 Causation 302
24.8 Treatment approaches 303
24.9 Most common treatments recommended 303
24.10 Results 304
24.11 Discussion 304
24.12 Future clinical trials for the treatment of traumatic brain injury 305
24.13 Conclusion 305
References 306

25. Transcranial, red/near-infrared light-emitting diode therapy for chronic traumatic brain injury and poststroke aphasia: clinical studies 309
Margaret A. Naeser, Paula I. Martin, Michael D. Ho, Maxine H. Krengel, Yelena Bogdanova, Jeffrey A. Knight, Andrea Fedoruk, Michael R. Hamblin and Bang-Bon Koo

25.1 Traumatic brain injury 309
25.1.1 Introduction to traumatic brain injury 309
25.1.2 Sports-related traumatic brain injury 309
25.1.3 Traumatic brain injury in soldiers and veterans 309
25.1.4 Diffuse axonal injury and white matter abnormalities on magnetic resonance imaging scans 310
25.1.5 Development of neurodegenerative disease posttraumatic brain injury 310
25.1.6 Functional brain imaging in traumatic brain injury 310
25.1.7 Resting-state, functional-connectivity magnetic resonance imaging in traumatic brain injury 310
25.1.8 Cognitive dysfunction in traumatic brain injury 311
25.1.9 Sleep disturbances in traumatic brain injury 311
25.1.10 Pharmacologic treatments for traumatic brain injury 311
25.1.11 Cognitive rehabilitation therapies for traumatic brain injury 312
25.2 Photobiomodulation for chronic traumatic brain injury

25.2.1 Transcranial light-emitting diode treatment performed at home, to improve cognition in chronic, mild traumatic brain injury—case reports 312

25.2.2 Transcranial light-emitting diode treatment to improve cognition in chronic, mild traumatic brain injury—open protocol, group study 313

25.2.3 Results 313

25.3 Ongoing current studies on photobiomodulation for traumatic brain injury 314

25.3.1 Transcranial light-emitting diode treatment to improve cognition and sleep in mild traumatic brain injury 314

25.3.2 Intranasal (only) light-emitting diode treatment to improve cognition and sleep 316

25.4 Discussion, photobiomodulation for traumatic brain injury 317

25.4.1 Executive function, and relationship to resting-state, functional-connectivity magnetic resonance imaging networks (default mode network and salience network) 317

25.4.2 Specific transcranial light-emitting diode placements may affect specific parts of the salience network and default mode network in traumatic brain injury cases 318

25.4.3 Verbal learning and memory, and relationship to resting-state, functional-connectivity magnetic resonance imaging (central executive network) 318

25.4.4 Specific transcranial light-emitting diode placements may affect specific parts of the central executive network in traumatic brain injury cases 319

25.4.5 Depression 319

25.4.6 Posttraumatic stress disorder relationship to intrinsic networks, default mode network and salience network 319

25.4.7 Weak connections between cortical nodes within intrinsic neural networks 320

25.4.8 Mechanisms and cellular effects, post-red/near-infrared transcranial light-emitting diode 320

25.5 Photobiomodulation to improve language in chronic aphasia, due to left hemisphere stroke 321

25.5.1 Stroke-aphasia 321

25.5.2 Importance of specific light-emitting diode placement areas on the scalp to treat aphasia, in chronic stroke 322

25.5.3 Bilateral transcranial light-emitting diode treatment method 322

25.5.4 Left hemisphere only, transcranial light-emitting diode treatment method 322

25.5.5 Results 323

25.5.6 Photobiomodulation to treat primary progressive aphasia, a neurodegenerative disease 323

25.6 Photobiomodulation for possible chronic traumatic encephalopathy 324

25.7 Conclusion 326

References 326

Thomas J. Covey, David W. Shucard, Melissa Meynadasy, Thomas Mang and Praveen R. Arany

26.1 Introduction 333

26.2 Neuropathology of traumatic brain injury 335

26.3 Putative targets of photobiomodulation therapy in traumatic brain injury 336

26.4 Treatment parameters and biological targets of photobiomodulation in animal models of traumatic brain injury 336

26.5 Effects of photobiomodulation on cognitive performance in animal models of traumatic brain injury 343

26.6 Enhancement of cognitive performance in healthy individuals with photobiomodulation treatment 345
30. Electroencephalography as the diagnostic adjunct to transcranial photobiomodulation

Reza Zomorrodi, Genane Loheswaran and Lew Lim

30.1 Introduction
30.2 Electroencephalography
30.3 Brain waves
 30.3.1 Delta oscillations
 30.3.2 Theta oscillations
 30.3.3 Alpha oscillations
 30.3.4 Beta oscillations
 30.3.5 Gamma oscillations
30.4 Photobiomodulation as a new noninvasive brain stimulation method
30.5 The causal link between photobiomodulation and neural oscillations
 30.5.1 Maintaining homeostasis
 30.5.2 Calcium signaling
30.6 Evidence for transcranial photobiomodulation influences on brain oscillations
30.7 The potential use of electroencephalography with photobiomodulation for brain disorders
30.8 Discussion and conclusion
References

31. Can photobiomodulation enhance brain function in older adults?

Agnes S. Chan, Michael K. Yeung and Tsz L. Lee

31.1 Frontal lobe deterioration and normal human aging
 31.1.1 Structural and functional deteriorations of the frontal lobe in normal human aging
 31.1.2 Cognitive declines in frontal lobe functioning in normal human aging
 31.1.3 Conventional interventions for improving frontal lobe functioning in normal older adults
31.2 Photobiomodulation and neuroenhancement
 31.2.1 Mechanisms of action of photobiomodulation
 31.2.2 Photobiomodulation for enhancing brain functions in humans
31.3 Photobiomodulation for normal older adults: a potential intervention for the aging brain
Acknowledgment
Conflict of interest
References
Further reading

32. Noninvasive neurotherapeutic treatment of neurodegeneration: integrating photobiomodulation and neurofeedback training

Marvin H. Berman, Trent Nichols, Jason Huang and Damir Nizamutdinov

32.1 Photobiomodulation and neurotherapy introduction
32.2 Pathophysiology of neurodegeneration
32.3 Photobiomodulation therapy
32.4 Near infrared photobiomodulation decreases synaptic vulnerability to Aβ
32.5 Early human clinical trials
32.6 Digit span measures
32.7 Neuropsychological testing results
32.8 Treatment of neurodegeneration with directed energy
32.9 Near infrared spectroscopy assessment of Alzheimer’s
32.10 Conclusion
References
Further reading

33. Transcranial photobiomodulation therapy: observations from four movement disorder patients

Catherine Hamilton, David Hamilton, Frank Nicklason and John Mitrofanis

33.1 Introduction
33.2 Case descriptions
 33.2.1 Progressive supranuclear palsy: Patient FH
 33.2.2 Parkinson’s disease: Patient BS
 33.2.3 Parkinson’s disease: Patient PN
 33.2.4 Parkinson’s disease: Patient MH
33.3 Discussion
33.4 Conclusion
Acknowledgment
References
34. Cerebral blood flow in the elderly: impact of photobiomodulation
Afonso Shiguemi Inoue Salgado, Francisco José Cidral-Filho, Daniel Fernandes Martins, Ivo I. Kerppers and Rodolfo Borges Parreira
34.1 Introduction 473
34.2 Brain hemodynamics in the elderly 473
34.3 Effect of photobiomodulation of the brain in the elderly 475
References 475
Further reading 477

35. Transcranial photobiomodulation for major depressive and anxiety disorders and for posttraumatic stress disorder
Marco Antonio Caldieraro and Paolo Cassano
35.1 The potential of transcranial photobiomodulation for the anxious and depressed 479
35.2 Transcranial photobiomodulation for major depressive disorder 480
35.3 Transcranial photobiomodulation for anxiety disorders and for posttraumatic stress disorder 481
35.4 Safety and tolerability of transcranial photobiomodulation 484
35.5 Dosing transcranial photobiomodulation for mood and anxiety disorders 484
35.6 Conclusion 485
References 485

36. Action at a distance: laser acupuncture and the brain
Nicholas Alexander Wise
36.1 Background 489
36.1.1 Acupuncture and meridian theory 489
36.1.2 Physical properties of meridians and acupoints 489
36.1.3 Microsystems 490
36.1.4 Acupuncture methods 490
36.2 Laser acupuncture 491
36.2.1 Potential mechanisms of laser acupuncture 491
36.2.2 The deqi question 491
36.3 Acupuncture and the brain 492
36.3.1 Functional magnetic resonance imaging 492
36.4 Laser acupuncture and the brain 493
36.4.1 Animal studies 493
36.4.2 Laser acupuncture and functional magnetic resonance imaging 494
36.4.3 The frequency question 494
36.4.4 Laser acupuncture and depression 494
36.4.5 Laser acupuncture and cerebral blood flow 495
36.4.6 Laser acupuncture and brain oscillations 496
36.4.7 Laser acupuncture for stroke and neurorehabilitation 496
36.4.8 The wavelength question 496
36.5 Conclusion 497
References 497

37. Signature wounds of war: a case study
George Louis Lindenfeld and George Rozelle
37.1 Introduction 503
37.2 RESET Therapy 506
37.3 Case study 508
References 514

38. Transcatheter intracerebral photobiomodulation in degenerative brain disorders: clinical studies (Part 1)
Ivan V. Maksimovich
38.1 Introduction 515
38.2 Materials and methods 517
38.2.1 Patient selection criteria 517
38.2.2 Patient examination plan 517
38.2.3 Treatment methods 519
38.3 Results 520
38.3.1 Test group 520
38.3.2 Control group 524
38.4 Discussion 525
38.5 Conclusion 526
38.6 Conflict of interest 526
38.7 Funding 526
References 526
39. Transcatheter intracerebral photobiomodulation in ischemic brain disorders: clinical studies (Part 2)

Ivan V. Maksimovich

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>39.1 Introduction</td>
<td>529</td>
</tr>
<tr>
<td>39.2 Materials and methods</td>
<td>531</td>
</tr>
<tr>
<td>39.2.1 Patient selection criteria</td>
<td>531</td>
</tr>
<tr>
<td>39.2.2 Patient screening plan</td>
<td>531</td>
</tr>
<tr>
<td>39.2.3 Analysis of patients</td>
<td>531</td>
</tr>
<tr>
<td>39.2.4 Selection of patients</td>
<td>532</td>
</tr>
<tr>
<td>39.2.5 Methods of treating patients</td>
<td>533</td>
</tr>
<tr>
<td>39.2.6 Evaluation of results</td>
<td>535</td>
</tr>
<tr>
<td>39.3 Results</td>
<td>535</td>
</tr>
<tr>
<td>39.3.1 Test group 1—Patients with intracerebral atherosclerosis and chronic cerebrovascular insufficiency</td>
<td>535</td>
</tr>
<tr>
<td>39.3.2 Test group 2—patients with intracerebral atherosclerosis and previous ischemic stroke</td>
<td>536</td>
</tr>
<tr>
<td>39.3.3 Control group 1—patients with intracerebral atherosclerosis and chronic cerebrovascular insufficiency</td>
<td>538</td>
</tr>
<tr>
<td>39.3.4 Control Group 2—patients with intracerebral atherosclerosis and previous ischemic stroke</td>
<td>539</td>
</tr>
<tr>
<td>39.3.5 Clinical results in the long-term period</td>
<td>539</td>
</tr>
<tr>
<td>39.4 Discussion</td>
<td>540</td>
</tr>
<tr>
<td>39.5 Conclusion</td>
<td>541</td>
</tr>
<tr>
<td>Conflict of interest</td>
<td>542</td>
</tr>
<tr>
<td>Funding</td>
<td>542</td>
</tr>
<tr>
<td>References</td>
<td>542</td>
</tr>
</tbody>
</table>

40. Russian low level laser therapy techniques for brain disorders

Sergey V. Moskvin and Andrey V. Kochetkov

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>40.1 Introduction</td>
<td>545</td>
</tr>
<tr>
<td>40.2 Protocol requirements of low level laser therapy procedures in Russia, low level laser therapy techniques</td>
<td>545</td>
</tr>
<tr>
<td>40.3 Intravenous laser blood illumination</td>
<td>547</td>
</tr>
<tr>
<td>40.4 Noninvasive laser blood illumination</td>
<td>549</td>
</tr>
<tr>
<td>40.5 The analysis of the literature on the use of low level laser therapy in patients with various cerebrovascular disorders</td>
<td>551</td>
</tr>
<tr>
<td>40.6 Indications</td>
<td>565</td>
</tr>
<tr>
<td>40.7 Contradictions</td>
<td>566</td>
</tr>
<tr>
<td>References</td>
<td>569</td>
</tr>
</tbody>
</table>

41. Laser treatment of central nervous system injuries: an update and prospects

L. Longo

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>41.1 Introduction</td>
<td>573</td>
</tr>
<tr>
<td>41.2 Clinical experience</td>
<td>574</td>
</tr>
<tr>
<td>41.3 Mechanisms of action</td>
<td>582</td>
</tr>
<tr>
<td>41.4 Appendix—Motor control and the Grimaldi maneuver</td>
<td>584</td>
</tr>
<tr>
<td>References</td>
<td>586</td>
</tr>
</tbody>
</table>

42. Photobiomodulation treatment for brain disorders: posttraumatic stress disorder (PTSD) and dementia

Randy Lamartiniere, Rhett Bergeron, Ronald Aung-Din, Matthew Bennett, William Stephan and Louis Banas

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>42.1 Introduction (clinical team)</td>
<td>589</td>
</tr>
<tr>
<td>42.2 Original concussion case</td>
<td>590</td>
</tr>
<tr>
<td>42.3 Posttraumatic stress disorder evaluation</td>
<td>591</td>
</tr>
<tr>
<td>42.4 Case studies for posttraumatic stress disorder</td>
<td>593</td>
</tr>
<tr>
<td>42.4.1 Case studies for dementia</td>
<td>595</td>
</tr>
<tr>
<td>42.5 Conclusion and future directions</td>
<td>597</td>
</tr>
<tr>
<td>References</td>
<td>597</td>
</tr>
</tbody>
</table>

43. What we don’t know and what the future holds

Michael R. Hamblin

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>43.1 Questions, or what we don’t know</td>
<td>599</td>
</tr>
<tr>
<td>43.2 What are the best diseases and conditions to be treated?</td>
<td>599</td>
</tr>
<tr>
<td>43.3 How important is light penetration to the brain?</td>
<td>600</td>
</tr>
<tr>
<td>43.4 What about systemic effects?</td>
<td>600</td>
</tr>
<tr>
<td>43.5 What is the best way to deliver light?</td>
<td>601</td>
</tr>
<tr>
<td>43.6 How important is pulsing?</td>
<td>601</td>
</tr>
<tr>
<td>43.6.1 Pulse parameters and light sources</td>
<td>601</td>
</tr>
<tr>
<td>43.6.2 Types of pulsed light sources</td>
<td>602</td>
</tr>
<tr>
<td>43.6.3 Why could pulsing be important in photobiomodulation?</td>
<td>602</td>
</tr>
<tr>
<td>Section</td>
<td>Title</td>
</tr>
<tr>
<td>---------</td>
<td>--</td>
</tr>
<tr>
<td>43.6.4</td>
<td>Effect of pulsing photobiomodulation for the brain</td>
</tr>
<tr>
<td>43.7</td>
<td>How important is the location on the head?</td>
</tr>
<tr>
<td>43.8</td>
<td>How important is the biphasic dose response?</td>
</tr>
<tr>
<td>43.9</td>
<td>What about cognitive enhancement and preconditioning?</td>
</tr>
<tr>
<td>43.10</td>
<td>How does photobiomodulation compare with other noninvasive brain stimulation techniques?</td>
</tr>
<tr>
<td>43.10.1</td>
<td>Transcranial magnetic brain stimulation</td>
</tr>
<tr>
<td>43.10.2</td>
<td>Transcranial direct current stimulation</td>
</tr>
<tr>
<td>43.10.3</td>
<td>Low intensity pulsed ultrasound</td>
</tr>
<tr>
<td>43.11</td>
<td>Could an invasive approach be considered?</td>
</tr>
<tr>
<td>43.12</td>
<td>What does the future hold?</td>
</tr>
<tr>
<td></td>
<td>References</td>
</tr>
<tr>
<td></td>
<td>Index</td>
</tr>
</tbody>
</table>
List of Contributors

Praveen R. Arany Department of Oral Biology and Biomedical Engineering, School of Dental Medicine, University at Buffalo, Buffalo, NY, United States

Jorge L. Arias INEUROPA (Instituto de Neurociencias del Principado de Asturias), Oviedo, Spain; Laboratory of Neuroscience, Department of Psychology, University of Oviedo, Asturias, Spain

Natalia Arias Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, United Kingdom; INEUROPA (Instituto de Neurociencias del Principado de Asturias), Oviedo, Spain

Ronald Aung-Din Sarasota, FL, United States

Evan Austin Department of Dermatology, University of California at Davis, Sacramento, CA, United States; Dermatology Service, Sacramento VA Medical Center, Mather, CA, United States

Louis Banas Laser Innovations, Amherst, New York, United States

Matthew Bennett Patterson, CA, United States

Patrick Benson Bosch Institute, University of Sydney, Sydney, NSW, Australia; Discipline of Physiology, University of Sydney, Sydney, NSW, Australia

Rhett Bergeron Real Health Medical, Roswell, GA, United States

Marvin H. Berman Quietmind Foundation, Elkins Park, PA, United States

Yelena Bogdanova VA Boston Healthcare System, Boston, MA, United States; Department of Psychiatry, Boston University School of Medicine, Boston, MA, United States

Marco Antonio Caldieraro Universidade Federal do Rio Grande do Sul, Department of Psychiatry and Forensic Medicine, Porto Alegre, RS, Brazil; Hospital de Clínicas de Porto Alegre, Department of Psychiatry, Porto Alegre, RS, Brazil

James D. Carroll Thor Photomedicine Ltd., Chesham, United Kingdom

Paolo Cassano Depression Clinical and Research Program, Department of Psychiatry, Massachusetts General Hospital, Boston, MA, United States; Center for Anxiety and Traumatic Stress Disorders, Department of Psychiatry, Massachusetts General Hospital, Boston, MA, United States; Department of Psychiatry, Harvard Medical School, Boston, MA, United States

Marucia Chacur Laboratory of Functional Neuroanatomy of Pain, Department of Anatomy—ICB, University of São Paulo, São Paulo, Brazil

Agnes S. Chan Department of Psychology, The Chinese University of Hong Kong, Hong Kong, China; Chanwuyi Research Center for Neuropsychological Well-Being, The Chinese University of Hong Kong, Hong Kong, China

Suk-tak Chan Harvard Medical School, Massachusetts General Hospital, Boston, MA, United States; Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Boston, MA, United States
Linda Chao Departments of Radiology & Biomedical Imaging and Psychiatry, University of California, San Francisco, CA, United States

Francisco José Cidral-Filho Experimental Neuroscience Laboratory (LaNEx), University of Southern Santa Catarina, Palhoça, Santa Catarina, Brazil; Postgraduate Program in Health Sciences, University of Southern Santa Catarina, Santa Catarina, Brazil

Thomas J. Covey Division of Cognitive and Behavioral Neurosciences, Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, United States

Luís De Taboada Chief Technology Officer, LiteCure LLC, New Castle, DE, United States

Janis T. Eells Department of Biomedical Sciences, University of Wisconsin-Milwaukee, Milwaukee, WI, United States

Nabil El Massri Department of Anatomy, University of Sydney, Sydney, NSW, Australia

Andrea Fedoruk VA Boston Healthcare System, Boston, MA, United States

Manuel Fierro Department of Dermatology, University of California at Davis, Sacramento, CA, United States; Dermatology Service, Sacramento VA Medical Center, Mather, CA, United States

Saša R. Filipović Institute for Medical Research, University of Belgrade, Belgrade, Serbia

Sherry Fox BioCare Systems, Inc., Parker, CO, United States, Colorado BioScience Association, Denver, CO, United States, National Association of Laser Therapy, Baltimore, MD, United States, LumiWave NIR Therapy Device, Operation Stand Tall Against TBI — A Non-Profit Organization, Calhan, CO, United States

Juan Díaz González Área de Tecnología Electrónica de la Universidad de Oviedo, Gijón, Spain; Grupo de Electrónica para la Innovación Industrial, Gijón, Spain

Luke Gordon Bosch Institute, University of Sydney, Sydney, NSW, Australia; Discipline of Physiology, University of Sydney, Sydney, NSW, Australia

Rajiv Gupta Harvard Medical School, Massachusetts General Hospital, Boston, MA, United States; Department of Radiology, Neuroradiology Division, Massachusetts General Hospital, Boston, MA, United States

Michael R. Hamblin Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA, United States; Department of Dermatology, Harvard Medical School, Boston, MA, United States; Harvard-MIT Division of Health Sciences and Technology, Cambridge, MA, United States

Catherine Hamilton Department of Anatomy, University of Sydney, Sydney, NSW, Australia

David Hamilton Department of Anatomy, University of Sydney, Sydney, NSW, Australia

Theodore A. Henderson Neuro-Laser Foundation, Centennial, CO, United States; The Synaptic Space, Centennial, CO, United States

Michael D. Ho VA Boston Healthcare System, Boston, MA, United States

Jason Huang Department of Neurosurgery, Baylor Scott & White Health, Dallas, TX, United States

Ying-Ying Huang Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA, United States; Department of Dermatology, Harvard Medical School, Boston, MA, United States

Jared Jagdeo Department of Dermatology, University of California at Davis, Sacramento, CA, United States; Dermatology Service, Sacramento VA Medical Center, Mather, CA, United States; Department of Dermatology, State University of New York, Downstate Medical Center, Brooklyn, NY, United States

Daniel M. Johnstone Bosch Institute, University of Sydney, Sydney, NSW, Australia; Discipline of Physiology, University of Sydney, Sydney, NSW, Australia

Linda Ramball Jones Department of Physics and Astronomy, College of Charleston, Charleston, SC, United States

Ramanjot Kaur Department of Dermatology, University of California at Davis, Sacramento, CA, United States

Ivo I. Kerppers Laboratory of Neuroanatomy and Neurophysiology, University of Centro-Oeste, Guarapuava, Brazil

Boaz Kim Bosch Institute, University of Sydney, Sydney, NSW, Australia; Discipline of Physiology, University of Sydney, Sydney, NSW, Australia
Sergey V. Moskvin The Federal State-Financed Institution “O.K. Skobelkin State Scientific Center of Laser Medicine under the Federal Medical Biological Agency” of Russia, Moscow, Russia

Margaret A. Naeser VA Boston Healthcare System, Boston, MA, United States; Department of Neurology, Boston University School of Medicine, Boston, MA, United States

Trent Nichols Quietmind Foundation, Elkins Park, PA, United States

Frank Nicklason Department of Anatomy, University of Sydney, Sydney, NSW, Australia; Geriatric Medicine, Royal Hobart Hospital, Hobart, TAS, Australia

Damir Nizamutdinov Department of Neurosurgery, Baylor Scott & White Health, Dallas, TX, United States

Amir Oron Department of Orthopedic Surgery, Kaplan Medical Center, Rehovot, Israel

Uri Oron Department of Zoology, George S. Wise Faculty of Life Sciences and Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel

Rodolfo Borges Parreira Salgado Institute of Integrative Health, Londrina, Brazil; Residency Program in Integrative Physical Therapy at UNIFIL University, Londrina, Brazil

Alberto Martín Pernía Área de Tecnología Electrónica de la Universidad de Oviedo, Gijon, Spain; Grupo de Electrónica para la Innovación Industrial, Gijon, Spain

Claudia Petrucco Bosch Institute, University of Sydney, Sydney, NSW, Australia; Discipline of Physiology, University of Sydney, Sydney, NSW, Australia

Nathali Cordeiro Pinto Physiotherapy, Bright Photomedicine Ltd., São Paulo, Brazil

Marcelo Victor Pires de Sousa Bright Photomedicine Ltd., São Paulo, Brazil

Eva-Maria Ratai Harvard Medical School, Massachusetts General Hospital, Boston, MA, United States; Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Boston, MA, United States; Department of Radiology, Neuroradiology Division, Massachusetts General Hospital, Boston, MA, United States

Carlo Rondinoni Institute of Radiology (INRAD), Universidade de São Paulo, São Paulo, Brazil

George Rozelle MindSpa Integrative Wellness Center, Sarasota, FL, United States

Saeed Sadigh-Eteghad Neurosciences Research Center, Tabriz University of Medical Sciences, Tabriz, Iran

Farzad Salehpour Neurosciences Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; ProNeuroLIGHT LLC, Phoenix, AZ, United States

Afonso Shiguemi Inoue Salgado Salgado Institute of Integrative Health, Londrina, Brazil; Residency Program in Integrative Physical Therapy at UNIFIL University, Londrina, Brazil

Anita Saltmarche Saltmarche Health & Associates Inc., Orangeville, ON, Canada

David W. Shucard Division of Cognitive and Behavioral Neurosciences, Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, United States

William Stephan Buffalo, New York, United States

Jonathan Stone Bosch Institute, University of Sydney, Sydney, NSW, Australia; Discipline of Physiology, University of Sydney, Sydney, NSW, Australia

Luis De Taboada Chief Technology Officer, LiteCure LLC, New Castle, DE, United States

M.A. Tolentino College of Health Sciences, University of Wisconsin-Milwaukee, Milwaukee, WI, United States

Lorelei Tucker Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, GA, United States

Erica B. Wang Department of Dermatology, University of California at Davis, Sacramento, CA, United States; Dermatology Service, Sacramento VA Medical Center, Mather, CA, United States

Nicholas Alexander Wise Department of Physical Medicine and Rehabilitation, UNC Chapel Hill School of Medicine, Chapel Hill, NC, United States
Margaret Wong-Riley Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI, United States

Mei X. Wu Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA, United States; Department of Dermatology, Harvard Medical School, Boston, MA, United States; Harvard-MIT Division of Health Sciences and Technology, Cambridge, MA, United States

Luodan Yang Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, GA, United States

Michael K. Yeung Department of Psychology, The Chinese University of Hong Kong, Hong Kong, China; Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QC, Canada

Elisabeth Mateus Yoshimura Institute of Physics, Laboratory of Radiation Dosimetry and Medical Physics, University of São Paulo, São Paulo, Brazil

Quanguang Zhang Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, GA, United States

Reza Zomorrodi Temerty Centre for Therapeutic Brain Intervention, Centre for Addiction and Mental Health, Toronto, ON, Canada
Photobiomodulation (PBM) also known as low-level laser (or light) therapy has been known for over 50 years (since 1967), but it is only relatively recently that it has begun to make the transition into the mainstream. PBM describes the use of red or near-infrared light at levels that do not produce undue heating of the tissue to produce beneficial effects on the human body. The introduction of light-emitting diodes (LEDs) has made this approach more accessible than the previously used laser sources, as LEDs are safer, cheaper, and can easily be used at home. Another factor that has led to PBM becoming more widely accepted is the growing understanding of the mechanisms of action at a molecular and cellular level. The lack of a clear mechanism of action was a deterrent to many biomedical scientists who maintained a healthy level of skepticism.

Among the wide range of tissues, organs, diseases, and conditions that can be beneficially affected by PBM, the subject of this book is the brain. The brain is probably the single human organ that engenders the most concern, interest, and expenditure in the 21st century. Brain disorders that cause widespread morbidity, mortality, and loss of quality of life can be divided into four broad categories. Traumatic brain disorders include stroke, traumatic brain injury (TBI), global ischemia, and perinatal difficulties. Neurodegenerative diseases include Alzheimer’s disease, Parkinson’s disease, and a range of dementias. Psychiatric disorders include major depression, anxiety, addiction, and insomnia, among many others. Finally there are neurodevelopmental disorders (autism and ADHD) and the possibility of cognitive enhancement in healthy individuals. Many of these brain disorders are specifically addressed in the present volume.

The book is divided into three parts. The first part covers some basic considerations, dosimetry, and devices, and discusses the mechanisms of action at a cellular level and on the brain as a whole organ. The second part includes contributions from researchers who have carried out studies on a variety of animal models in their investigations of brain disorders, stroke, TBI, and Alzheimer’s and Parkinson’s diseases, to name a few. The third part concentrates on human studies, including controlled clinical trials, pilot trials, case series, and clinical experience. Disorders treated include TBI, stroke, Alzheimer’s and Parkinson’s diseases, depression, and others.

The book is expected to play a role in stimulating the further increase and acceptance of PBM for brain disorders, which has really started to take off in recent years. It will also act as a resource for researchers and physicians wishing to get a broad overview of the field and who are contemplating entering it themselves. The number of individuals considering obtaining a home-use PBM device is also steadily increasing and this book will act as an authoritative source of unbiased, well-researched, information, which is all the more necessary in the Internet age.